20
Tests for trend

Up to this point we have dealt exclusively with comparisons of exposed and
unexposed groups. Although it is possible that the action of an exposure is
‘all or nothing’, coming into play only when a threshold dose is exceeded,
it is more common to find a dose-response relationship, with increasing
dose leading to increasing disease rates throughout the range of exposure.
This chapter introduces analyses which take account of the level or dose of
exposure.

20.1 Dose-response models for cohort studies

The simplest model for dose-response relationship assumes that the effect
of a one-unit increase in dose is to multiply the rate (or odds) by 6, where
0 is constant across the entire range of exposure. Thus the effect of each
increment of dose on the log rate or odds is to add an amount 8 = log(8).
This model is called the log-linear model and is illustrated in Fig. 20.1. The
dose level is denoted by 2. The rate at dose z = 0 is given by log(Xo) = a,
at z = 1. by log(\1) = a+ 8, at z = 2 by log(Az) = o + 24, and so on.

In principle, log-linear models present no new problems. The model
describes the rate at different doses z in terms of two parameters o and
8. The first of these describes the log rate in unexposed persons and will
normally be a nuisance parameter; the second is the parameter 3, which
describes the effect of increasing exposure. The contribution to the log
likelihood from D, events in Y, person-years of observation at dose z is

D, log(X;) = YA,

and the total log likelihood is the sum of such terms over all levels of
exposure observed. This is a function of both @ and § but; as before, we
can obtain a profile likelihood for the parameter of interest, 3, by replacing
« by its most likely value for each value of 8. This profile likelihood is
given by the expression:

Y, exp(Bz)
2 D:log (219 exp(ﬂz)> !

where both summations are over dose levels z. Exactly the same log likeli-
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log(Rate)

Dose, z
Fig. 20.1. Log-linear trend.

hood is obtained using the retrospective conditional argument based on the
probability that the cases split between exposure categories in the ratios
observed. .

To find the most likely value of the parameter B requires computer
programs for Poisson regression, whose use will be discussed in Part IL
However, the likelihood can be used to obtain some simpler analytical
procedures. Most importantly, a statistical test for the significance of a
dose-response effect can be derived by calculating the gradient of the log
likelihood at 8 = 0. This leads to the score

where summation is over exposure doses z and, as usual, D = > D,. The
first term within the brackets is the mean exposure for cases, while the
second is the mean exposure in the entire cohort, using the person-time
observation as weights. The weighting ensures that a subject observed for
twice as long contributes twice as much to the mean; this is necessary since
he or she has twice the chance of becoming a case.

Denoting means of z by Z, the score may be written

U=D (2Cases - 2Cohort) .

The score variance, obtained from the curvature of the log likelihood curve
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Table 20.1. Observed and expected deaths from bladder cancer in work-
ers in the nuclear industry

Dose code, 2 0 1 2 3 4 5 6
Dose (mSv): <10 10- 20— 50- 100- 200- > 400
Observed, D, 3 2 1 1 3 2 2

Expected, E, 62 1.0 22 1.8 1.5 1.0 0.4

at §=0,is 2

V=D E‘% - ('ZCohort)2
This expression is D times the variance of the exposure doses z within the
cohort (again weighting by person-time of observation). The calculation of
weighted means and variances is easily carried out on scientific calculators
which include special keys for these operations.

The same argument applies in the construction of tests for trend in
SMR’s except that instead of the person-time Y, we now use E,, the ex-
pected numbers of events obtained by application of age-specific reference
rates. The use of this test is illustrated in the following example.

RADIATION AND BLADDER CANCER

Table 20.1 shows observed deaths from carcinoma of the bladder in a cohort
of radiation workers, classified according to the radiation dose received.
Also shown are the numbers of deaths expected in each category on the
basis of England and Wales rates.* The mean dose code for the bladder
cancer cases is:

3x04+2x14+1x2+4+...42%x6

o =293

The expected mean is obtained by using the expected numbers of cases as
weights, is

6.2x0+10x14+22x24...4+404x%x6
14.1

=172

so the score is
U =14(2.93 - 1.72) = 16.9.

The weighted variance of the dose may be calculated using the appropriate

calculator key, or from :

6.2 x (0)24+1.0x (1)2+22x (2)?+...4+0.4 x (6)?

—_ 2 —
T (1.72)? = 3.31,

*From Smith, P.G. and Douglas, A.J. (1986) British Medical Journal, 293, 845-854.
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so the score variance is V = 14 x 3.31 = 46.4. The score test is therefore
(16.9)2/46.4 = 6.16, which corresponds to a p-value of 0.013. Although in
this example, radiation dose was grouped into a few discrete categories, this
is not a requirement of the analysis. Dose could be recorded more exactly
so that no two individuals share the same dose. Observed and expected
mean doses are calculated in the same way.

When the exposure dose is roughly normally distributed within cases,
the log likelihood is nearly quadratic and an approximation to the most
likely value of 3 is provided by

U _ Mean dose (cases) — Mean dose (cohort)
vV Variance of dose {cohort)

The standard deviation of this estimate is approximately 1/1/V.

Exercise 20.1. (a) Calculate a rough estimate of 3 for the bladder cancer data.
(The maximum likelihood estimate is 0.328.)

(b) What is the interpretation of 37 How may the effect be expressed in terms
of rote raties?

{c) How would the interpretation of the analysis be changed if the calculations
had been carried out using the actual radiation dose as z rather than the 0-6
code?

20.2 Stratified analysis of cohort data

The extension of these ideas to stratified analysis involves only a slight
extension of the model. Use of either a profile or conditional approach
leads to a log likelihood function for 8 which is simply a sum over strata of
contributions of the same form as in the previous section. In consequence,
the score and score variances at 8 = 0 are simply sums of contributions
from each stratum:

U

Z Dt (zéases - zf]ohort;) )

V=th.

U

ENERGY INTAKE AND IHD

An example of the use of this method is shown in Table 20.2. The table
is calculated from the same data on energy intake and ischaemic heart
disease which has been encountered in previous chapters, and compares
observed and expected mean energy intake of heart disease cases. The
study cohort was drawn from three rather different occupational groups,
bank workers, London bus drivers, and London bus conductors. To control
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Table 20.2. Mean energy intake (kcal/day) of IHD cases

Bank staff Drivers Conductors
Age Obs. Exp. Obs. Exp. Obs. Exp.
40-49 2769 3015 2918 2853 - -

4 2 ()
50-59 2514 2894 2808 2838 2515 2845
®) 4 (5)
6069 2725 2846 2458 2833 2718 2828
M (6) 9)

for confounding by age and occupation, 9 strata are required. Table 20.2
shows the comparisons of means for the 9 strata formed by crossing the
three occupational groups by three age bands. The numbers of cases are
shown in parentheses.

The most striking feature of this table is the consistency of the finding
that energy intake is lower in cases than would be expected under the null
hypothesis. This is confirmed by the overall significance test for which

U = 4x(2769—3015)+---+9 x (2718 — 2828)
—9765
V = 8446000,

i

so that the score test is (—9765)2/8 446000 = 11.29 and p < 0.001 (detailed

workings for V' are not shown).
The use of U and V to obtain a rough estimate of 3 is exactly the same
as in the unstratified case.

Exercise 20.2. Calculate an approximate estimate of 3 for the energy intake
data, using the values of U, V given above. Calculate the change in log rate
predicted for a 500 kcal change in energy intake and express this as a rate ratio.

20.3 Dose-response relationships in case-control studies

The extension of these methods to deal with case-control studies requires
only the change to an appropriate likelihood. In Chapter 17 we showed
that this is the likelihood based upon the split of the N, subjects observed
with exposure level z as D, cases and H, controls. If the odds predicted
by the model for such a split are w,, the log likelihood is

Z [D,log{w,) — N, log(1 + w,)].

The idea that the rate ratio for each dose increment is constant translates,
in the case-control study, to a constant odds ratio for each one unit change
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Table 20.3. Screening histories in breast cancer deaths and controls

Negative screens

0 1 2 3 Total
Cases 29 22 3 3 57
Controls 99 122 40 24 285
Subjects 128 144 43 27 442

in dose. Thus the model for the log odds takes the same form as Fig. 20.1:
log(w,) = o + Bz.

This is a logistic regression model. Computer programs for estimating 3
are widely available and their use will be discussed in Part II, but a score
test of the null hypothesis 8 = 0 requires only simple tabulations and a
hand calculator. The nuisance parameter, c, is removed either by a profile
likelihood approach, or by a conditional argument leading to the hyperge-
ometric likelihood. In either case, the score test given by the gradient of
the log likelihood curve turns out to be:

U - % EDZz_ZHZz
- N D H ’

DH _ 3
N (ZCases — ZControls)

The score variance is obtained from the curvature of the log likelihood
and, as in section 17.3, the profile and the conditional approaches lead to
slightly different expressions. For the conditional approach,

_ DH Y N,(2)% - N(2)?
- N (N—-1) ’

where Z is the overall mean dose (3 N,z)/N. Apart from the factor DH/N,
this is the usual estimate of the variance of dose in the study when cases
and controls are combined. The profile likelihood argument leads to the
same expression, but with (N — 1) replaced by N.

Exercise 20.3. In Chapter 19, a case control study of the efficacy of a ra-
diographic breast cancer screening programme was discussed. Table 20.3 shows
data drawn from a similar study concerning the number of times women had
been screened (with negative result).

(2) By calculating case/control ratios, examine the data for evidence of decreas-
ing risk with increasing numbers of negative screens.

(b) The mean number of screens for cases is 0.649, and for controls is 0.961. The

tFrom Palli, D. et al. (1986) International Journal of Epidemiology, 38, 501~504.
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overall variance of the number of screens is 0.810. Calculate the score and score
variance and the corresponding chi-squared value.

Extension of these results to stratified and matched case-control studies
follows along familiar lines. Each stratum (or case-control set) provides its
own contribution to the score:

DH!
Ut = Nt (

St st
ZCases zControls) .

The overall score is the sum of these contributions and the score variance
(using the hypergeometric conditional argument) is the sum contributions:
_ D'H'Y, Ni(2)2 - N*'(z)?

TNt Nt—1 ’

Vt

This stratified version of the score test for 8 = 0 is often called the Mantel
extension test.

Under the log-linear model, if the dose is normally distributed in con-
trols then it will also be normally distributed in cases, but with a different
mean value. In those circumstances, an estimate of 8 will be provided by
U/V as in earlier sections.

When there are only two dose levels (z = 0 and z = 1), it can be shown
that the tests set out in this chapter are identical to those discussed in
previous chapters. It follows from this equivalence that all the score tests
discussed in this book may be thought of as comparisons of mean exposures.
This insight makes possible the use of standard computer programs for
summary tabulations of large bodies of data. This is particularly valuable
for preliminary analysis and for demonstrating the consistency of a finding
over subgroups.

Exercise 20.4. If you are undeterred by algebra, you might like to try and prove
this equivalence.

Solutions to the exercises

20.1 The rough estimate of 3 is 16.9/46.4 = 0.36. This is the log of the
rate ratio for one unit change in dose score. The rate ratio is exp0.36 = 1.4.
The dose code is constructed so that one unit change in z represents a
doubling of the radiation dose, so that the approximately fitted model
suggests that doubling the radiation dose multiplies the bladder cancer rate
by approximately 1.4. If the analysis had been carried out by calculating
means of radiation dose itself rather than mean dose code, the implied

‘model would have been rather different — that the addition of a given

radiation dose would multiply the rate by some constant amount.

20.2 The rough estimate of 3 is —9765/8 446 000 = —1.16 x 10~3. This
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is the change in the log rate for one unit change in energy intake. For
500 keal change, the change in log rate is —~1.16 x 103 x 500 = —0.58.
This corresponds to a rate ratio of exp —0.58 = 0.56. The study therefore
indicates that an increase of 500 kcal in daily energy intake is associated
with an approximate halving of the incidence rate of IHD.

20.3 The case/control ratios for 0, 1, 2 and 3 previous negative screens are
0.29, 0.18, 0.08 and 0.13 respectively, suggesting that mortality rates from
breast cancer fall with increasing numbers of previous negative screens.
The score is

57 x 285
U= W(O.MQ —0.961) = —14.82
and the score variance is
57 x 285

so that the score test is (—14.82)%/38.47 = 5.71, corresponding to a p-
value of 0.017. The use of this test in this case is debatable, since it is
not by any means clear that a simple linear or log-linear dose-response
relationship should apply. The true relationship between screening history
and subsequent mortality depends in a complex way upon the sensitivity of
the test, the speed of growth of tumours, the relationship between prognosis
and tumour stage at start of treatment, together with the time interval
between screens. Most of the evidence for trend comes from the higher
case/control ratios in the never screened group, rather than from a gradient
with increasing number of screens. We must be careful not to interpret a
significant trend test as indicating evidence for dose-response as such.

20.4 For cohort studies, the equivalence follows from the fact that Zcges
is the proportion of cases exposed, D;/D. Similarly Zoopost is the pro-
portion of person-time exposed, Y1/Y. The variance of a binary z in the

cohort is 5
o h)"_Yh
Y Y - (Y)?

and substitution of these expressions into the formulas given in section 20.1
gives the same test as Chapter 13.
For case-control studies, the means of z in cases and in controls are the
corresponding proportions exposed, Dy /D and Hy/H. The variance of z
in the study is

N =N /N)? — NoVy

N -1 T NN -1)

Substitution of these values into the formulas of section 20.3 gives the test
discussed in Chapter 17.
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